did2s

Table of contents

  1. Notes
  2. Installation
  3. Test the command

Notes

Installation

ssc install did2s, replace

Take a look at the help file:

help did2s

Test the command

Let’s try the basic did2s command:

did2s Y, first_stage(id t) second_stage(F_* L_*) treatment(D) cluster(id)

which will show this output:

                                     (Std. err. adjusted for clustering on id)
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
         F_2 |   .2253244   .2301779     0.98   0.328     -.225816    .6764647
         F_3 |    .128698   .2333503     0.55   0.581    -.3286603    .5860563
         F_4 |  -.1034735   .2210323    -0.47   0.640    -.5366889    .3297418
         F_5 |   .0552204   .1918748     0.29   0.774    -.3208473     .431288
         F_6 |  -.1979187   .2018475    -0.98   0.327    -.5935326    .1976951
         F_7 |  -.1802993   .2217714    -0.81   0.416    -.6149633    .2543646
         F_8 |   .0756883   .1691673     0.45   0.655    -.2558736    .4072502
         F_9 |   .0365711   .2123039     0.17   0.863    -.3795369     .452679
        F_10 |   .0605167   .1902589     0.32   0.750     -.312384    .4334174
         L_0 |   .0791996   .2780198     0.28   0.776    -.4657091    .6241084
         L_1 |   8.619413    .330885    26.05   0.000      7.97089    9.267936
         L_2 |   17.63192   .4278901    41.21   0.000     16.79327    18.47057
         L_3 |   26.00454   .6601769    39.39   0.000     24.71061    27.29846
         L_4 |   34.69155   .9373878    37.01   0.000     32.85431     36.5288
         L_5 |   42.57469   1.320541    32.24   0.000     39.98648    45.16291
         L_6 |    51.8403   1.579579    32.82   0.000     48.74439    54.93622
         L_7 |   59.97723   1.914613    31.33   0.000     56.22466     63.7298
         L_8 |   68.85919   2.106164    32.69   0.000     64.73118    72.98719
         L_9 |   77.24698   2.323762    33.24   0.000     72.69249    81.80147
        L_10 |   85.82518   2.649239    32.40   0.000     80.63277    91.01759
------------------------------------------------------------------------------

In order to plot the estimates we can use the event_plot (ssc install event_plot, replace) command as follows:

	event_plot, default_look graph_opt(xtitle("Periods since the event") ytitle("Average effect") xlabel(-10(1)10) ///
		title("did2s")) stub_lag(L_#) stub_lead(F_#) together

And we get: